1. The graph shows the number of ice creams sold in a shop each day against the temperature at midday that day.

2. The scatter diagram shows the height and weight of twenty babies aged 12 months.

2

High scores are the reason for high marks.

High temperatures make more people buy ice cream.

(c) A newspaper headline reads: "2°C (average) over the middle of the week.

(ii) 16°C (July-180)

(ii) 28°C

(i) 22°C

(i) 2°C

(i) 2°C.

(i) 2°C

(ii) 16°C (July-180)

(ii) 28°C

(i) 22°C

(i) 2°C

(ii) 16°C (July-180)

(ii) 28°C

(i) 22°C

(i) 2°C

(ii) 16°C (July-180)

(ii) 28°C

(i) 22°C

(i) 2°C

(ii) 16°C (July-180)

(ii) 28°C

(i) 22°C

(i) 2°C

(ii) 16°C (July-180)

(ii) 28°C

(i) 22°C

Names: [Total Marks:]
(a) What proportion of the 10 people passed on their first test?

(b) The scatter diagram shows the number of dancing lessons and the number of tests passed. Give one reason why this might not be a good way to predict the number of tests passed.

(c) Anne needs to pass 7 tests. How many lessons does she need?

(d) Moll and Key have a height of 23 cm. Her baby girl is 15 months old. Explain why it may not be sensible to base projections on this.

(e) The right and weight of one of the babies is not typical for babies aged 12 months.

(a) Tell us how to do this.

(b) The height and weight of one of the babies is not typical for babies aged 12 months.

(c) Draw a line of best fit and use it to estimate another baby's weight.

(d) Tell us how to do this.
1. Katie measured the length and the width of each of 10 pine cones from the same pine tree. She used her results to draw this scatter graph: (a) Find the correlation.
(b) Describe the correlation.
(c) Use a line of best fit to estimate the number of lessons needed to pass for any week positive, week negative, strong negative, weak positive.
(d) Describe the correlation.
(e) Use this graph to predict the number of driving lessons that a person who has 50 lessons will receive.

2. Katie recorded the area where plants are planted within 0-4 on x-axis and 0-3 on y-axis. (a) Describe one improvement Katie can make to her scatter graph.

3. To magnify the area where plants are planted.

4. Explain how the results for this pine cone differ from the results for the other pine cones and why.

5. Calculate the mean, median, and mode for the data.
Sprung Pendulum Constant

(a) Describe the correlation.

(b) Draw the line of best fit for all the other points.

(c) How much longer is the spring with a 5 g mass than with a 15 g mass?

(d) Estimate the length of the spring with no mass hanging on it.

(e) 50 cm - 2.1 cm = 27.9 cm

(f) 50 cm - 1 cm = 49 cm

(g) 49 cm - 1.5 cm = 47.5 cm

(h) 49 cm - 1.3 cm = 47.7 cm

(g) Mass (g)

(h) Length (cm)

(i) Length of the spring is measured for each mass.

(j) In the experiment, different masses are hanging on a spring.

(k) Student achieved in a Spanish test.

(l) It shows the number of hours spent revising and the mark the student achieved in a Spanish test.

(m) The scatter diagram shows information about 10 students.